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ABSTRACT

A numerical comparison of the exact solution,
the uniform asymptotic solution, and the non-
uniform asymptotic solution of a field that produces
a circular caustic is performed. It is seen that the
uniform asymptotic solution is accurate even at the
caustic for moderate values of ka. Curves and
data are given as a function of ka and distances
from the caustic. The asymptotic expressions are
derived both from the exact solution and from the
physics of the circular caustic.
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SECTION I

DERIVATION

The uniform asymptotic expansion developed in Lewis' paper* is valid
in the neighborhood of a caustic, and it reduces to the usual geometrical
optics representation away from the caustic. In Appendix I, these ex-
pansions are calculated for the circular caustic. Herein, an exact so-

lution of

<V2+k2)u=0, (1)

whose asymptotic expansions agree with that of Appendix I, enables us to
obtain a numerical comparison of an exact solution and its uniform and non-

uniform approximations.

An exact solution of (1) in two dimensions, where polar coordinates
are used, is the function
ikag
=e

Jka (kr). (2)

Here Jn(z) is the Bessel function of order n. We obtain a uniform asymp-
totic expansion of (2) by using the following formula, given in Asymptotic
Approximations by H. J effreys:T

P A (nz/?’ 1;) b= g

1/4

4&
Jn n sech u)~< ) >

tan p

(y—tanh u). (3)

* R. M. Lewis, Uniform Representation of Geometrical Optics Fields
Near a Caustic, The MITRE Corporation, ESD-TR-65-404, Bedford,

Mass., May 1966.

t H. Jeffreys, Asymptotic Approximations, England, Oxford University

Press, 1962, p. 84, Equation (36).
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In (3), Ai is the Airy function defined and discussed in Jeffreys' work™® and

in Appendix II. The formula is valid for large n.

In order to apply (3) to (2), one sets

-1
z-sechpy=(cosv) , v=1

3/2

(4)

2/3 e = -iv - tanh (-iv) =i (tan v-v)= inz -1- cos_1 l/z) s

2 2
’canh2 p=1l-sech p=1-z ,

and 1/4

Jn ‘(nz)~' [ t §2] n_l/3 Ai (n2/3 Z;) A

1l -2z

Here

- = 3/2[\Lz2—-1 - cos™ (1‘/z>j| "

in agreement with (5). Let n=Kka, z = r/a and apply (6) to (2).

1/4

| / /
L [Lz] (ka)” 13 A [(ka)2 35]4 ;

1-r2/a

or
iko
B~ elk g Al (-k2/3p> :

*See page 1, second reference.

(5)

(6)

(7)

The result is

(8)

(9)



Here

0=a9, e
p=-aPo g w2 0¥ = w=li? e _acos ey, )
and ]
oW [zt 1M _r_alB,
g=(ka) 57 2 | Bra 2 ) 2
r /a 0; k (r -a)

The non-uniform expansion is obtained from (9) by using the asymptotic

expansion

Ai (_z)~7lr— L, (2/3;3/2 ¥ n/4); - w3 <arg & < 7/3; ||~ (13)

=
of the Airy function.* Let
£ =125 . Then 23 ¢%? = kv and
1/4
sin <k\I/+ n/4> , (14)

”~_1_ eika¢ 4
N1 kz(rz _az)

or

27

~1ja : : :
o [kz (rz _32>] {elk(a<l>+\ll)+1 - _elk(a¢>-\If)-1 a5, (15)

This result may be interpreted in terms of geometrical optics with

the aid of Figure 1.

Two rays, each tangent to the circular caustic of radius a, intersect
at the point X whose polar coordinates are r, ¢. The two phases associ-

ated with these rays are

* See page 1, second reference, p. 33, Equation (30).
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1A- 16,778

Figure 1. Circular Caustic Corres-
ponding to Equation (15)

where

We see from (11) that

hence, (15) can be written in the form

pN

Si=0ij_ T 5 (16)
= = -1 2 2
U+=a(¢+01)=a¢+acos <%>,‘r= r -a . (17)
- -1
ap + ¥ =a¢ + a cos (%)iT=G+iT=S+ g (18)
im/4 . ; :
e l:z e11«:s—+ 2, e1ks+ - 17r/2} (19)
27k -



where

z =g = 7-1/2
A

(20)

In (20), the amplitude and the phase of the incoming and outgoing waves are

clearly exhibited. The amplitudes become infinite at the caustic (7=0), and
inf2

the phase-shift factor e~ multiplies the outgoing wave. The wave

fronts are the spirals S+ = constant.

Here, the uniform expansion (9-12) has been obtained directly from
the exact solution (2). In general, of course, the exact solution is not known.
Then, it is necessary to use the method developed in Lewis' report* to ob-
tain the uniform expansion. In Appendix I, that method is applied to this

problem, and a uniform expansion is obtained that agrees exactly with (9-12).

Numerical computations and graphs of the exact, uniform, and non-
uniform results will not be obtained. For this purpose, ¢=0 may be takeh,
since eika¢ is a common factor of all three results. It is noted that ka,
kr, k¥ , and k2/3p are dimensionless, therefore let k=1. The exact,

uniform, and non-uniform results are denoted by “1’ “2’ and u3 . Then,

By = (1) (21)
1/4
4
iy = <ﬁ> Al(-p) , (22)
r -a
and 1/4
2 1
Bq = \]—‘; <W> sin (¥ + 7/4) . (23)

See page 1, first reference.
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v = \l N o @a/r), (24)

o (39)" o

and



SECTION II

NUMERICAL RESULTS

These three functions were programmed for several values of ka as
a function of r/a. Figure 2 shows these curves for ka =2, 5, and 10. For
these values of ka, curves of the exact and uniform solutions are indis-
tinguishable, and only curves of K and u3 are shown. To indicate the
errors in the uniform approximations, a deviation curve is plotted for
ka=1 and ka=2 in Figure 3. Figure 4 is the same as Figure 2 except
that ka =1/2, 1/4, 1/8, and 1/16.

For these values of ka, /,12 has diverged sufficiently from “1 S0
that three curves can be distinguished. From these curves the following

conclusions are clear. The non-uniform approximation is very accurate

1
A,
]
/.—-""'_ kd=2
_-q\ kﬂ=.5
a
[ B ka 410
@ ™N N i '
. IS TN N
5 NERANY, "
\ N4 N
\WHZAN
\"“"----’
E_ O 1.1 12 1.3 14 15 16 17 1B 19 20 21 22 23 24 25 26 27 2B 29 30
3 NORMALIZED DISTANCE

Figure 2. Plot of Field versus Normalized Distance for Various ka
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RELATIVE DISTANCE

IB-16,775

Figure 3. Plot of Error versus Relative Distance for Two Values of ka

FIELD

N s 00 N O W

L | I . | : | i L I
1 2 3 4 5 6 7 8 9 011 12 13 14 15 16 I7 18 19 20 2l
NORMALIZED DISTANCE

o

Figure 4. Plot of Field versus Normalized Distance for Various ka
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for sufficiently large r/a and all ka. The uniform approximation is good
for almost all r/a even for quite small ka. To indicate the actual errors
in the uniform approximation, the maximum full-scale percentage error for

various ka is indicated in Table I. This is defined as

maximum | “2 - ull 100

maximum “1

From the curves of Figure 3, it can be seen that the deviation from the ex-

act solution at a given point may be considerably smaller than this value.

Examination of the field on the caustic using (21), (22), and (23) leads
to the exact solution By = Jka(ka), while the uniform approximation is inde-
terminate and the non-uniform approximation is singular. In Appendix III,

an expression is developed for the uniform approximation (26).

Table I

Percentage Error for Various ka

ka Percentage Error
1/64 87.5
/A4S 57.6
1/16 31.6
1/8 17.3
1/4 8.05
1/2 33

1 1.7

2 0.45
3 0. 27
5 0.18
10 0.082
20 0.037
50 0.017




u= alT A -alT (26)
In Figure 5, the actual percentage error at the caustic as a function of ka*
is plotted. Since the largest value of the exact solution is not at the caustic,
these errors are slightly larger than those of Table I. As ka becomes
large, the error goes to zero. As ka goes to zero, Ry becomes singular.
At small ka the exact solution approaches unity, and hence the relative

error, (”2 _#1)/”1 , approaches the difference.

™\

o

PERCENTAGE ERROR

' A | o]
o]} o

1B-16,776

Figure 5. Plot of Error on the Caustic as a Function of ka

* This curve was suggested by D. Ludwig, Courant Institute, New York, N.Y.
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APPENDIX I

THE CIRCULAR CAUSTIC

Herein, aspects of the application of various representations of geo-
metric optics fields near a caustic shall be considered. The standard
asymptotic expansion and a representation due to R. M Lewis* shall also
be considered. To be specific, the two-dimensional field that produces a

circular caustic was chosen.

The wave front that produces a circular caustic is a spiral determined
by a circle and constant length string. In Figure 6, we have the circular
caustic of radius a. The points 1' and 2' lie on the spiral wave front.

They are determined by the condition

@+p =L, (27)

where L is a constant and pi is the distance on the wave front to the

caustic; i.e., Py is the magnitude of the line segment 11' .

The field at any point off the caustic is determined by the two rays
that pass through the point. In Figure 2, the two indicated rays pass
through the point P. The distance from the point i on the wave front to
P is designated by T, The distances from P to 1 and 2 are equal and
are

gl ol (28)

where r 2a is the radial coordinate of the point P. We note that

= A 29
TSPy S, (29)
T, =Pyt S, (30)

& See page 1, first reference.
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Figure 6. Circular Caustic
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or that one ray through p has touched the caustic. The angular location of

points 1 and 2 are found from
_ -1a '
¢=0+cos  “/r , (31)

where 0 is the angular coordinates of P. Using (30), (27), and (28) on
(29), the following is obtained:

g = =g (9 SEes a/r'>- \!r2 -5 : (32)
7,=L-a (9 Y a/r>+ \]r2 e (33)

The standard asymptotic formula* for the field at p is

w2, (1 ) 71/"1)-1/2 K él + 71> vz, (1 ) 72/p2>-1/2 eik<sz % 12), (34)

where the subscript refers to the ray. This expression differs from that in
Lewis' report* since this is a two-dimensional problem where p is used
instead of the curvature k. The term associated with the second ray
involves taking the square root of a negative quantity. This indicates the
phase shift of 7r/2 at the caustic. This formula is not valid at the caustic
since it is singular at such points. Using the previous results for the

circular caustic, relation (34) becomes

-1/4

2 2
= -1 N2 2
Z1 (r a) ik<S1+L-a9+acos a/r-\lr —a)

] (L ot a/r)l/2 )

2, (2 -2)™ —
- i = 2 2
+ 2 v e]k(s + L -af - acos la/r+\lr -a —7T/2k)
-1, , \1/2 )
(1 - a cos a/r)

u

(35)

%
See page 1, first reference, Equation (93).
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For computation, the following assumptions are convenient,

(36)

3

iks iks -1 1/2
zZ e 1=Zze 2=k1/2<L-aLcos a/r>/

9=0. (37)
Equation (37) requires that the field is constant along the wave front, and
the results must be normalized so that this constant is unity. That 6 =0
follows from a reasonable choice of coordinate system.
To simplify the result, L can now be chosen such that

e1kL e—17r/4= 1 (38)

Then (35) reduces to

ikL +i
T

u=2i2 = /4 sin (ka cos-:l afr -k \Jr2 = a‘2 + A (39)
Y 2(r2 a2>1/4

and Equation (39) is rewritten

2 ) o 2 2
u= 1/4 sin \ka cos /r—k\r -a +TmH4), (40)
12 (rz _ a2> / ( / )

Lewis* gives a uniform asymptotic expansion

, kb kb,
e e
12 -i 1
u= 2 It | [2 -imfa ), e e * 2 e
| . '71/"1‘ ‘1'72/92|
ikb :
1Al (-22) | zpe z, o' P
) . (41)
¢ 1/2 1/2 (
Il’Tl/pZ‘ ll'Tz/pz '

* See page 1, first reference, Equations (68) and (69).
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where

1
& =(3k[4) /3 (T2 - 'rl) /s (42)
and
o
_ -
bi—si + > (43)

Using Equations (32), (33), (36-38), and (41),

1/2 l<3k/2> (R '1/6

k1/2 <r2 ) az) 1/4

B=2m

2/8

Ail - <3k/2> Ve? - 8% - a cosL B (44)

Note the disappearance of the derivative of the Airy function because
of the symmetry of the caustics. If the asymptotic expansion of the Airy

function* is used in (44), Equation (40) is recovered.

The comparison of Equations (40) and (44) with Equations (22) and (23)
shows agreement except for a numerical constant of \11/27r . Thus, a check
is provided on the validity of the manipulations. This factor arises from

the arbitrary choice of amplitude for the wave.

*
See page 1, second reference, p. 33, Equation (30).
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APPENDIX II

THE AIRY FUNCTION

The Airy function is defined (e. g., in Jeffreys' work)* as

Alfzy= — | o te-1f3t3 o :

27

b

where L 1 is the contour in the t-plane shown in Figure 7.

(45)

The transformation t =is is introduced. Then for real z the trans-

formed contour can be shifted to the real axis, and

Figure 7. Contour Relevant to the

1A-16,780

Airy Function

*See page 1, second reference, Equation (1).
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93

is obtained.

An alternative representation is

o0
Ai(z) = % S cos(sz+s3/3) ds; z real .

17
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APPENDIX OI

THE UNIFORM ASYMPTOTIC FIELD AT THE CAUSTIC*

A quick examination of Equation (44) or, equivalently, (22) does not
indicate that the uniform asymptotic expansion is finite at the caustic.
In Lewis' reportf, it was shown that this was generally true. Here, this
shall be shown directly from Equation (22). The resultant formula will also

give a simple expression near the caustic. Let

F=afl+e ; (48)
where € is a small positive quantity. Then

rz—az = a\lZe+ €2~a\]2€ R (49)

and from relation (24)

\I/-Qrz—az

a

= cos ! (ajr) . (50)

Taking the cosine of both sides and expanding the power series to second

order in € and first order in ¥ ,

\I,___ZE €3/2

(51)
3 1/2

is obtained. For the field near the caustic, the following can now be

obtained.

1/3

SR EON|

*We wish to thank J. D. R. Kramer of The MITRE Corporation, Bedford,
Mass, for this derivation.

t See page 1, first reference, Equation (6).
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